Simulated likelihood inference for stochastic volatility models using continuous particle filtering
نویسندگان
چکیده
Discrete-time stochastic volatility (SV) models have generated a considerable literature in financial econometrics. However, carrying out inference for these models is a difficult task and often relies on carefully customized Markov chain Monte Carlo techniques. Our contribution here is twofold. First, we propose a new SV model, namely SV–GARCH, which bridges the gap between SV and GARCH models: it has the attractive feature of inheriting unconditional properties similar to the standard GARCH model but being conditionally heavier tailed. Second, we propose a likelihood-based inference technique for a large class of SV models relying on the recently introduced continuous particle filter. The approach is robust and simple to implement. The technique is applied to daily returns data for S&P 500 and Dow Jones stock price indices for various spans.
منابع مشابه
Modelling Stochastic Volatility with Leverage and Jumps: a Simulated Maximum Likelihood Approach via Particle Filtering
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle...
متن کاملModeling Stochastic Volatility with Leverage and Jumps: A ‘Smooth’ Particle Filtering Approach
In this paper we provide a unified methodology in order to conduct likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle...
متن کاملStochastic Volatility: Likelihood Inference and Comparison with ARCH Models
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with ...
متن کاملExact likelihood inference for autoregressive gamma stochastic volatility models
Affine stochastic volatility models are widely applicable and appear regularly in empirical finance and macroeconomics. The likelihood function for this class of models is in the form of a high-dimensional integral that does not have a closed-form solution and is difficult to compute accurately. This paper develops a method to compute the likelihood function for discrete-time models that is acc...
متن کاملFitting general stochastic volatility models using Laplace accelerated sequential importance sampling
Simulated maximum likelihood has proved to be a valuable tool for fitting the log-normal stochastic volatility model to financial returns time series. In this paper, we develop a methodology that generalizes these methods to more general stochastic volatility models that are naturally cast in terms of a positive volatility process. The methodology relies on combining two well known methods for ...
متن کامل